1# pylint: disable=line-too-long,useless-suppression2# ------------------------------------3# Copyright (c) Microsoft Corporation.4# Licensed under the MIT License.5# ------------------------------------6 7"""8DESCRIPTION:9 This sample demonstrates how to use Agent operations with the Connected Agent tool from10 the Azure Agents service using a synchronous client.11 12USAGE:13 python sample_agents_connected_agent.py14 15 Before running the sample:16 17 pip install azure-ai-projects azure-ai-agents azure-identity18 19 Set these environment variables with your own values:20 1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview21 page of your Azure AI Foundry portal.22 2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in23 the "Models + endpoints" tab in your Azure AI Foundry project.24"""25 26import os27from azure.ai.projects import AIProjectClient28from azure.ai.agents.models import ConnectedAgentTool, MessageRole29from azure.identity import DefaultAzureCredential30 31project_client = AIProjectClient(32 endpoint=os.environ["PROJECT_ENDPOINT"],33 credential=DefaultAzureCredential(),34)35 36connected_agent_name = "stock_price_bot"37 38with project_client:39 agents_client = project_client.agents40 41 stock_price_agent = agents_client.create_agent(42 model=os.environ["MODEL_DEPLOYMENT_NAME"],43 name=connected_agent_name,44 instructions=(45 "Your job is to get the stock price of a company. If asked for the Microsoft stock price, always return $350."46 ),47 )48 49 # [START create_agent_with_connected_agent_tool]50 # Initialize Connected Agent tool with the agent id, name, and description51 connected_agent = ConnectedAgentTool(52 id=stock_price_agent.id, name=connected_agent_name, description="Gets the stock price of a company"53 )54 55 # Create agent with the Connected Agent tool and process assistant run56 agent = agents_client.create_agent(57 model=os.environ["MODEL_DEPLOYMENT_NAME"],58 name="my-assistant",59 instructions="You are a helpful assistant, and use the connected agents to get stock prices.",60 tools=connected_agent.definitions,61 )62 # [END create_agent_with_connected_agent_tool]63 64 print(f"Created agent, ID: {agent.id}")65 66 # Create thread for communication67 thread = agents_client.threads.create()68 print(f"Created thread, ID: {thread.id}")69 70 # Create message to thread71 message = agents_client.messages.create(72 thread_id=thread.id,73 role=MessageRole.USER,74 content="What is the stock price of Microsoft?",75 )76 print(f"Created message, ID: {message.id}")77 78 # Create and process Agent run in thread with tools79 run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)80 print(f"Run finished with status: {run.status}")81 82 if run.status == "failed":83 print(f"Run failed: {run.last_error}")84 85 # Delete the Agent when done86 agents_client.delete_agent(agent.id)87 print("Deleted agent")88 89 # Delete the connected Agent when done90 agents_client.delete_agent(stock_price_agent.id)91 print("Deleted stock price agent")92 93 # Fetch and log all messages94 messages = agents_client.messages.list(thread_id=thread.id)95 for msg in messages:96 if msg.text_messages:97 last_text = msg.text_messages[-1]98 print(f"{msg.role}: {last_text.text.value}")
Business, governance, and adoption-focused material. Real-world implementations, case studies, and industry impact.