1# pylint: disable=line-too-long,useless-suppression
2# ------------------------------------
3# Copyright (c) Microsoft Corporation.
4# Licensed under the MIT License.
5# ------------------------------------
6"""
7DESCRIPTION:
8 This sample demonstrates how to add files to agent during the vector store creation.
9
10USAGE:
11 python sample_agents_enterprise_file_search.py
12
13 Before running the sample:
14
15 pip install azure-ai-projects azure-ai-agents azure-identity azure-ai-ml
16
17 Set these environment variables with your own values:
18 1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
19 page of your Azure AI Foundry portal.
20 2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
21 the "Models + endpoints" tab in your Azure AI Foundry project.
22 3) AZURE_BLOB_URI - The URI of the blob storage where the file is uploaded. In the format:
23 azureml://subscriptions/{subscription-id}/resourcegroups/{resource-group-name}/workspaces/{workspace-name}/datastores/{datastore-name}/paths/{path-to-file}
24"""
25
26import os
27from azure.ai.projects import AIProjectClient
28from azure.ai.agents.models import (
29 FileSearchTool,
30 ListSortOrder,
31 VectorStoreDataSource,
32 VectorStoreDataSourceAssetType,
33 RunStatus,
34)
35from azure.identity import DefaultAzureCredential
36
37project_client = AIProjectClient(
38 endpoint=os.environ["PROJECT_ENDPOINT"],
39 credential=DefaultAzureCredential(),
40)
41
42with project_client:
43 agents_client = project_client.agents
44
45 # [START upload_file_and_create_agent_with_file_search]
46 # If provided, we will upload the local file to Azure and will use it for vector store creation.
47 # Otherwise, we'll use a previously created dataset reference
48 if "AZURE_BLOB_URI" in os.environ:
49 asset_uri = os.environ["AZURE_BLOB_URI"]
50 else:
51 dataset_name = os.environ["AZURE_DATASET_NAME"]
52 dataset_version = os.environ["AZURE_DATASET_VERSION"]
53 dataset = project_client.datasets.get(name=dataset_name, version=dataset_version)
54 asset_uri = dataset.id
55
56 # Create a vector store and wait for it to be processed
57 ds = VectorStoreDataSource(asset_identifier=asset_uri, asset_type=VectorStoreDataSourceAssetType.URI_ASSET)
58 vector_store = agents_client.vector_stores.create_and_poll(data_sources=[ds], name="sample_vector_store")
59 print(f"Created vector store, vector store ID: {vector_store.id}")
60 vector_store_files = {}
61 for fle in agents_client.vector_store_files.list(vector_store.id):
62 uploaded_file = agents_client.files.get(fle.id)
63 vector_store_files[fle.id] = uploaded_file.filename
64
65 # Create a file search tool
66 file_search_tool = FileSearchTool(vector_store_ids=[vector_store.id])
67
68 # Notices that FileSearchTool as tool and tool_resources must be added or the agent unable to search the file
69 agent = agents_client.create_agent(
70 model=os.environ["MODEL_DEPLOYMENT_NAME"],
71 name="my-agent",
72 instructions="You are helpful agent",
73 tools=file_search_tool.definitions,
74 tool_resources=file_search_tool.resources,
75 )
76 # [END upload_file_and_create_agent_with_file_search]
77 print(f"Created agent, agent ID: {agent.id}")
78
79 thread = agents_client.threads.create()
80 print(f"Created thread, thread ID: {thread.id}")
81
82 message = agents_client.messages.create(
83 thread_id=thread.id, role="user", content="What is the content of the files you have access to?"
84 )
85 print(f"Created message, message ID: {message.id}")
86
87 run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
88 print(f"Created run, run ID: {run.id}")
89
90 if run.status == RunStatus.FAILED:
91 print(f"Run failed with: |{run.last_error}|")
92
93 agents_client.vector_stores.delete(vector_store.id)
94 print("Deleted vector store")
95
96 agents_client.delete_agent(agent.id)
97 print("Deleted agent")
98
99 messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
100 for msg in messages:
101 if msg.text_messages:
102 last_text = msg.text_messages[-1].text.value
103 for annotation in msg.text_messages[-1].text.annotations:
104
105 citation = vector_store_files.get(annotation.file_citation.file_id, annotation.file_citation.file_id)
106 last_text = last_text.replace(annotation.text, f" [{citation}]")
107 print(f"{msg.role}: {last_text}")